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Abstract Using the theory of actions of groups on sets this paper describes an effi-
cient method to obtain the partition of the symmetric powers of a G-set into orbits,
where G is a finite group. In this method, a generating function is obtained for each
representative of the conjugacy classes of subgroups of G. The coefficients of the gen-
erating function corresponding to a representative subgroup H ≤ G give the number
of orbits isomorphic to the coset G/H that are contained in the successive symmetric
powers of the G-set. A direct application of this approach is the attainment of the
number and isotropy group of the vibrational force constants associated with a set of
internal coordinates for a given molecule. As illustration, the method has been applied
to XYZ3 (C3v) molecules.
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1 Introduction

Internal coordinates, such as changes in the bond lengths and in the angles between
chemical bonds, provide a physically meaningful set of coordinates for the description
of the potential energy of the molecule; in addition, the force constants associated with
these coordinates have a direct physical interpretation [1]. For these reasons, a frequent
task in vibrational spectroscopy is the enumeration of the force constants associated
with a set of internal coordinates, X , for a given molecule. Two force constants are
considered essentially the same if the molecular symmetry group, G, contains an ele-
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ment that transforms one of them into the other. In consequence, as will be seen later,
there exists an isomorphism between the set of force constants of degree n and the set
of orbits of the nth symmetric power of X, Sn(X); hence the enumeration of the force
constants of degree n reduces to the partition of Sn(X) into orbits. The most used
method in vibrational spectroscopy is that of Watson [2]. In this method the number
of orbits in Sn(X) is obtained as the number of times that the unit representation of
G appears in the reduction of the representation �(Sn(X)) spanned by Sn(X). The
disadvantages of this method are that it does not give information about the isotropy
group of the force constants, the attainment of the characters for �(Sn(X)) requires
the use of a different formula for each value of n, and the calculation of these charac-
ters is very laborious in the case of high values of n and when the molecule has high
symmetry. This method is widely employed by vibrational spectroscopists because of
the widespread use of the representation theory in the study of molecular structure.
A more efficient but less known method to obtain the number of force constants is
provided by polynomial invariant theory [3,4]. In this approach the number of orbits
in Sn(X) is given by the coefficient of tn in the Molien series:

M(t) = 1

|G|
∑

g∈G

1

det(�(e)− t�(g))
= a0 + a1t + a2t2 + · · ·

where |G| is the order of G,� is the matrix representation of G spanned by X , and e is
the unit element of G. Techniques based on this theory have been developed to obtain
algebraically independent invariant polynomials, which are useful in the description
of the potential energy of the molecule [5–7].

This paper describes a new procedure for the enumeration of force constants which
is based on the theory of actions of finite groups. This approach gives us the number
of force constants of a given order associated to a given isotropy group. In contrast to
the above methods, it does not require the use of the matrix representation generated
by the set of internal coordinates, which is an advantage in the case of high symmetry
groups.

2 Definitions and mathematical background

In order to fix the notation, we summarize some basic facts about the action of groups
on sets. More details and proofs can be found in references [8–11].

Let G be a finite group acting on a set X = {x, y, z, . . .} with |X | elements. The
action of G on X is given by a mapping G × X → X which sends each (g, x) ∈ G × X
to gx ∈ X , so that:

1) ex = x for all x ∈ X
2) g(hx) = (gh)x for all g, h ∈ G and x ∈ X

where e is the unit element of G.
The orbit of an element x ∈ X is the set O(x) = Gx = {gx : g ∈ G}, and the isot-

ropy group or stabilizer of x is the set Gx = {g ∈ G : gx = x}. For each x ∈ X, Gx
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is a subgroup of G. The number of elements of the orbit O(x) is:

|O(x)| = |G : Gx | = |G|/|Gx |.

The set of stabilizers of the elements of O(x) are conjugate subgroups. Thus, for each
x ∈ X and g ∈ G, Ggx = gGx g−1 = {ghg−1 : for all h ∈ Gx }. The set X can be
partitioned into orbits; thus, if we choose a representative xi from every orbit, we have:

X =
⋃

i
O(xi ) (disjoint union)

then the number of elements of X satisfies:

|X | =
∑

i
|O(xi )|

Let H be a subgroup of G and g be any element of G. The left coset gH is defined as
gH = {gh : h ∈ H}. The set of left cosets of H in G, denoted by G/H , is a G-set via
left multiplication; i.e. given two elements g1 and g2 of G, the action of g1 on g2 H is
defined as g1(g2 H) = (g1g2)H . Under this G-action, the stabilizer of the coset gH
is the subgroup gHg−1 = {ghg−1 : h ∈ H}, which is conjugate to H .

Given two subgroups H, K ≤ G, the mark of H in G/K is defined as [11]:

MKH = |(G/K )H |

where

|(G/K )H | = |{gK : g ∈ G, hgK = gK for all h ∈ H}|

is the number of cosets of K whose stabilizer contains H . This mark can be also
obtained using [12]:

MKH = |NG(H)|
|K | ν(K , H)

where

NG(H) = {g ∈ G : gH = Hg}

is the normalizer of H , and

ν(K , H) = |{gHg−1 : g ∈ G, gHg−1 ≤ K }|

is the number of subgroups of K which are conjugate to H .
The table of marks of G is the square matrix whose entries are MKH , where both

K and H range over representatives of the conjugacy classes of subgroups of G.
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There exists an isomorphism between the orbit of x ∈ X and the set of cosets of
Gx : O(x) ∼= G/Gx . Thus, the set X is isomorphic to an element of the Burnside ring
of the group G [10–13]:

X ∼=
∑

K

a(X)K G/K

where K ranges over representatives of the conjugacy classes of subgroups of G and
a(X)K is the number of orbits in X that are isomorphic to G/K . The coefficients
a(X)K can be obtained using:

a(X)K =
∑

H

B(G)HK |X H | (1)

where |X H | is the number of elements in X whose stabilizer is the subgroup H and
B(G)HK is the HK entry of the Burnside matrix which is the inverse of the table of
marks.

3 Symmetric powers of G-sets

Let �(X,N) be the set of functions φ : X → N, where N is the set of natural num-
bers, N = {0, 1, 2, . . .}. The elements of�(X,N) are the monomial x p yq zr · · ·, where
x, y, z, . . . ∈ X ; p, q, r, . . . ∈ N and φ(x) = p, φ(y) = q, φ(z) = r, . . . The set
�(X,N) is a graded G-set that can be decomposed as:

�(X,N) = S0(X) ∪ S1(X) ∪ S2(X) ∪ · · ·

where Sn(X) is the nth symmetric power1 of X and contains the monomials of degree
n:

Sn(X) = {x p yq zr · · · |p + q + r + · · · = n}

For example, if X = {x, y, z} we have:

S1(X) = {x, y, z}
S2(X) = {x2, xy, xz, y2, yz, z2}
S3(X) = {x3, x2 y, x2z, xy2, xyz, xz2, y3, y2z, yz2, z3}
. . .

1 The nth symmetric power of X is also usually defined as the set of unordered n-tuples of elements of X .
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The number of elements of Sn(X) is equal to the combinations with repetition of
|X | elements taken from n in n:

|Sn(X)| = (|X | + n − 1)!
(|X | − 1)!n!

Given a subgroup H ≤ G, let us define the power series:

fH (t) =
∞∑

n=0

|Sn(X)H |tn

where |Sn(X)H | is the number of elements in Sn(X) whose stabilizer is H . It can be
shown [14,15] that:

fH (t) = 1(
1 − t |X1|) (

1 − t |X2|) · · · (2)

where X = X1 ∪ X2 ∪ X3 ∪ · · · is the partition of X into H -orbits; thus, if x ∈ Xi ,
then Xi = {hx : h ∈ H}. According to the above, |Sn(X)H | is the coefficient of tn in
the Maclaurin series for:

1/
(

1 − t |X1|
) (

1 − t |X2|
)

· · ·

From Eq. 1, the number of orbits in Sn (X) that are isomorphic to G/H is:

a(Sn(X))K =
∑

H≤G

BHK |Sn(X)H |

which coincides with the coefficient of tn in the power series of the function:

�K (t) =
∑

K

BHK fH (t) (3)

4 Force constants

Let us consider a molecule belonging to the symmetry group G whose vibrational
motion is described by a symmetrically complete set of internal coordinates X =
{r1, r2, r3, . . .}. The force constants are obtained from the derivatives
(∂n V (r1, r2, . . .)/∂

pr1∂
qr2 · · ·)eq, where V (r1, r2, . . .) is the potential energy in terms

of internal coordinates. Let us define the set:

F(X)n =
{

fr p
1 rq

2 ··· =
(
∂n V (r1, r2, . . .)

∂ pr1∂qr2 · · ·
)

eq
: p + q + · · · = n

}
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The action of G on the elements of F(X)n is given by:

g fr p
1 rq

2 ··· =
(

∂n(gV )

∂ p(gr1)∂q(gr2) · · ·
)

eq

for any g ∈ G. The potential energy remains unchanged under the action of G, i.e.
gV = V ; then

g fr p
1 rq

2 ··· = f(gr1)p(gr2)q ···

Let us define a mapping ψ : F(X)n → S(X)n as ψ( fr p
1 rq

2 ···) = r p
1 rq

2 · · ·. This map-
ping is a bijection and satisfies:

gψ
(

dr p
1 rq

2 ···
)

= g(r p
1 rq

2 · · ·) = (gr1)
p (gr2)

q · · · = ψ
(

dgr p
1 grq

2 ···
)

= ψ
(

gdr p
1 rq

2 ···
)

Hence this bijection is an isomorphism between G-sets: F(X)n ∼= S(X)n

Due to the molecular symmetry, the values of the derivatives fr p
1 rq

2 ··· remain
unchanged under the action of G: g fr p

1 rq
2 ··· = fr p

1 rq
2 ···; this means that two deriva-

tives are essentially distinct if they belong to different orbits of F(X)n , hence we
can associate a force constant to each orbit of F(X)n and, due to the isomorphism
F(X)n ∼= S(X)n , to each orbit of S(X)n . In consequence, the attainment of the num-
ber of force constants of degree n reduces to the calculation of the number of orbits
in S(X)n ; each of these orbits is isomorphic to a coset G/H , where H is the isotropy
group of the corresponding force constant.

5 Application to XYZ3(C3v) molecules

The vibrational motion of a XYZ3 (C3v) molecule can be described by a set of ten
internal coordinates [16] X = {R, L1, L2, L3, ϑ1, ϑ2, ϑ3, ϕ1, ϕ2, ϕ3}, where R and
Li are the X − Y and X − Zi length bonds respectively, ϑi is the Y − X − Zi angle,
and ϕi is the Z − X − Z angle opposite to the X − Zi bond (see Fig. 1).

The C3v symmetry group consists of the identity element e, two rotations C1
3 and

C2
3 around the X − Y bond, and three reflections σ1, σ2 and σ3 on the planes defined

by the atoms Y − X − Z1, Y − X − Z2 and Y − X − Z3 respectively. The subgroups
of C3v are the following:

C1 = {e}
C3 = {e,C1

3 ,C2
3 }

Cs(1) = {e, σ1}
Cs(2) = {e, σ2}
Cs(3) = {e, σ3}

C3v = {e,C1
3 ,C2

3 , σ1, σ2, σ3}
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Fig. 1 Internal coordinates for
the XYZ3(C3v) molecule

Table 1 Table of marks of the group C3v

C1 Cs C3 C3v

C3v/C1 6 0 0 0

C3v/Cs 3 1 0 0

C3v/C3 2 0 2 0

C3v/C3v 1 1 1 1

Table 2 Burnside matrix of the group C3v

C3v/C1 C3v/Cs C3v/C3 C3v/C3v

C1 1/6 0 0 0

Cs −1/2 1 0 0

C3 −1/6 0 1/2 0

C3v 1/2 −1 −1/2 1

where Cs(1),Cs(2) and Cs(3) are conjugate subgroup.
The table of marks and the Burnside matrix of the group C3v are shown in Tables 1

and 2 respectively.
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Table 3 Partitions of X into H -orbits

Subgroup Partition

C3v X = {R} ∪ {L1, L2, L3} ∪ {ϑ1, ϑ2, ϑ3} ∪ {ϕ1, ϕ2, ϕ3}
C3 X = {R} ∪ {L1, L2, L3} ∪ {ϑ1, ϑ2, ϑ3} ∪ {ϕ1, ϕ2, ϕ3}
Cs (1) X = {R} ∪ {L1} ∪ {L2, L3} ∪ {ϑ1} ∪ {ϑ2, ϑ3} ∪ {ϕ1} ∪ {ϕ2, ϕ3}
C1 X = {R} ∪ {L1} ∪ {L2} ∪ {L3} ∪ {ϑ1} ∪ {ϑ2} ∪ {ϑ3} ∪ {ϕ1} ∪ {ϕ2} ∪ {ϕ3}

The partitions of X into H -orbits are shown in Table 3. According to these parti-
tions, Eq. 2 gives the following functions fH (t):

fC3v (t) = 1

(1 − t)(1 − t3)3

fC3(t) = 1

(1 − t)(1 − t3)3

fCs (t) = 1

(1 − t)4(1 − t2)3

fC1(t) = 1

(1 − t)10

The substitution of the above expressions and the coefficients of Table 2 into Eq. 3
gives:

�(C3v) = 1 + t + t2 + 4t3 + 4t4 + 4t5 + 10t6 + 10t7 + 10t8 + 20t9 + · · ·
�(C3) = 0

�(Cs) = 3t+ 12t2+ 28t3+ 67t4+ 136t5+ 249t6+ 438t7+ 732t8+ 1156t9+ · · ·
�(C1) = 3t2 + 22t3 + 85t4 + 265t5 + 708t6 + 1686t7 + 3684t8 + 7522t9 + · · ·

According to the above, the partitions into orbits of the sets Sn(X) are:

S1(X) = (C3v/C3v)+ 3(C3v/Cs)

S2(X) = (C3v/C3v)+ 12(C3v/Cs)+ 3(C3v/C1)

S3(X) = 4(C3v/C3v)+ 28(C3v/Cs)+ 22(C3v/C1)

S4(X) = 4(C3v/C3v)+ 67(C3v/Cs)+ 85(C3v/C1)

S5(X) = 4(C3v/C3v)+ 136(C3v/Cs)+ 265(C3v/C1)

S6(X) = 10(C3v/C3v)+ 249(C3v/Cs)+ 708(C3v/C1)

S7(X) = 10(C3v/C3v)+ 438(C3v/Cs)+ 1686(C3v/C1)

S8(X) = 10(C3v/C3v)+ 732(C3v/Cs)+ 3684(C3v/C1)

S9(X) = 20(C3v/C3v)+ 1156(C3v/Cs)+ 7522(C3v/C1)

. . .
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Thus we obtain that, for example, the molecule has 4 + 67 + 85(= 156) quartic
force constants whose stabilizers are C3v, Cs and C1 respectively.

The above results are consistent with those obtained using the Molien series, which
in our example is given by:

M(t) = 1 + 3t2 + 7t3 + 6t4 + 6t5 + 10t6 + 3t7

(1 − t)4(1 − t2)3(1 − t3)3

= 1 + 4t + 16t2 + 54t3 + 156t4 + 405t5 + 967t6 + 2134t7

+ 4426t8 + 8698t9 + · · ·
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